26 research outputs found

    Cardiac Imaging Using Clinical 1.5 T MRI Scanners in a Murine Ischemia/Reperfusion Model

    Get PDF
    To perform cardiac imaging in mice without having to invest in expensive dedicated equipment, we adapted a clinical 1.5 Tesla (T) magnetic resonance imaging (MRI) scanner for use in a murine ischemia/reperfusion model. Phase-sensitive inversion recovery (PSIR) sequence facilitated the determination of infarct sizes in vivo by late gadolinium enhancement. Results were compared to histological infarct areas in mice after ischemia/reperfusion procedure with a good correlation (r = 0.807, P < .001). In addition, fractional area change (FAC) was assessed with single slice cine MRI and was matched to infarct size (r = −0.837) and fractional shortening (FS) measured with echocardiography (r = 0.860); both P < .001. Here, we demonstrate the use of clinical 1.5 MRI scanners as a feasible method for basic phenotyping in mice. These widely available scanners are capable of investigating in vivo infarct dimensions as well as assessment of cardiac functional parameters in mice with reasonable throughput

    Functionally Conserved Noncoding Regulators of Cardiomyocyte Proliferation and Regeneration in Mouse and Human

    Get PDF
    BACKGROUND: The adult mammalian heart has little regenerative capacity after myocardial infarction (MI), whereas neonatal mouse heart regenerates without scarring or dysfunction. However, the underlying pathways are poorly defined. We sought to derive insights into the pathways regulating neonatal development of the mouse heart and cardiac regeneration post-MI. METHODS AND RESULTS: Total RNA-seq of mouse heart through the first 10 days of postnatal life (referred to as P3, P5, P10) revealed a previously unobserved transition in microRNA (miRNA) expression between P3 and P5 associated specifically with altered expression of protein-coding genes on the focal adhesion pathway and cessation of cardiomyocyte cell division. We found profound changes in the coding and noncoding transcriptome after neonatal MI, with evidence of essentially complete healing by P10. Over two-thirds of each of the messenger RNAs, long noncoding RNAs, and miRNAs that were differentially expressed in the post-MI heart were differentially expressed during normal postnatal development, suggesting a common regulatory pathway for normal cardiac development and post-MI cardiac regeneration. We selected exemplars of miRNAs implicated in our data set as regulators of cardiomyocyte proliferation. Several of these showed evidence of a functional influence on mouse cardiomyocyte cell division. In addition, a subset of these miRNAs, miR-144-3p, miR-195a-5p, miR- 451a, and miR-6240 showed evidence of functional conservation in human cardiomyocytes. CONCLUSIONS: The sets of messenger RNAs, miRNAs, and long noncoding RNAs that we report here merit further investigation as gatekeepers of cell division in the postnatal heart and as targets for extension of the period of cardiac regeneration beyond the neonatal period.Leducq Foundation funding via the Transatlantic Network of Excellence (Grant 11CVD01), the British Heart Foundation funding via the Imperial College Centre of Research Excellence and the Imperial Cardiovascular Regenerative Medicine Centre RM/13/1/30157

    PI3Kγ Protects from Myocardial Ischemia and Reperfusion Injury through a Kinase-Independent Pathway

    Get PDF
    BACKGROUND: PI3Kgamma functions in the immune compartment to promote inflammation in response to G-protein-coupled receptor (GPCR) agonists and PI3Kgamma also acts within the heart itself both as a negative regulator of cardiac contractility and as a pro-survival factor. Thus, PI3Kgamma has the potential to both promote and limit M I/R injury. METHODOLOGY/PRINCIPAL FINDINGS: Complete PI3Kgamma-/- mutant mice, catalytically inactive PI3KgammaKD/KD (KD) knock-in mice, and control wild type (WT) mice were subjected to in vivo myocardial ischemia and reperfusion (M I/R) injury. Additionally, bone-marrow chimeric mice were constructed to elucidate the contribution of the inflammatory response to cardiac damage. PI3Kgamma-/- mice exhibited a significantly increased infarction size following reperfusion. Mechanistically, PI3Kgamma is required for activation of the Reperfusion Injury Salvage Kinase (RISK) pathway (AKT/ERK1/2) and regulates phospholamban phosphorylation in the acute injury response. Using bone marrow chimeras, the cardioprotective role of PI3Kgamma was mapped to non-haematopoietic cells. Importantly, this massive increase in M I/R injury in PI3Kgamma-/- mice was rescued in PI3Kgamma kinase-dead (PI3KgammaKD/KD) knock-in mice. However, PI3KgammaKD/KD mice exhibited a cardiac injury similar to wild type animals, suggesting that specific blockade of PI3Kgamma catalytic activity has no beneficial effects. CONCLUSIONS/SIGNIFICANCE: Our data show that PI3Kgamma is cardioprotective during M I/R injury independent of its catalytic kinase activity and that loss of PI3Kgamma function in the hematopoietic compartment does not affect disease outcome. Thus, clinical development of specific PI3Kgamma blockers should proceed with caution

    Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy

    Get PDF
    Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti-angiogenic treatment has limited efficacy due to therapy-induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy-induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid-derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti-angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitorinduced metastases, and high Apelin levels correlate with poor prognosis of anti-angiogenic therapy patients. These data identify a druggable anti-angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases

    Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception

    Get PDF
    The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. © 2012 Neely et al

    Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception

    Get PDF
    The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species

    Endothelial dysfunction in COVID-19: Current findings and therapeutic implications

    Full text link
    Coronavirus disease 2019 (COVID-19) increases the risk of several non-pulmonary complications such as acute myocardial injury, renal failure or thromboembolic events. A possible unifying explanation for these phenomena may be the presence of profound endothelial dysfunction and injury. This review provides an overview on the association of endothelial dysfunction with COVID-19 and its therapeutic implications. Endothelial dysfunction is a common feature of the key comorbidities that increase risk for severe COVID-19 such as hypertension, obesity, diabetes mellitus, coronary artery disease or heart failure. Preliminary studies indicate that vascular endothelial cells can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and evidence of widespread endothelial injury and inflammation is found in advanced cases of COVID-19. Prior evidence has established the crucial role of endothelial cells in maintaining and regulating vascular homeostasis and blood coagulation. Aggravation of endothelial dysfunction in COVID-19 may therefore impair organ perfusion and cause a procoagulatory state resulting in both macro- and microvascular thrombotic events. Angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs) and statins are known to improve endothelial dysfunction. Data from smaller observational studies and other viral infections suggests a possible beneficial effect in COVID-19. Other treatments that are currently under investigation for COVID-19 may also act by improving endothelial dysfunction in patients. Focusing therapies on preventing and improving endothelial dysfunction could improve outcomes in COVID-19. Several clinical trials are currently underway to explore this concept

    Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration

    Full text link
    Myocardial injury often leads to heart failure due to the loss and insufficient regeneration of resident cardiomyocytes. The low regenerative potential of the mammalian heart is one of the main drivers of heart failure progression, especially after myocardial infarction accompanied by large contractile muscle loss. Preclinical therapies for cardiac regeneration are promising, but clinically still missing. Mammalian models represent an excellent translational in vivo platform to test drugs and treatments for the promotion of cardiac regeneration. Particularly, short-lived mice offer the possibility to monitor the outcome of such treatments throughout the life span. Importantly, there is a short period of time in newborn mice in which the heart retains full regenerative capacity after cardiac injury, which potentially also holds true for the neonatal human heart. Thus, in vivo neonatal mouse models of cardiac injury are crucial to gain insights into the molecular mechanisms underlying the cardiac regenerative processes and to devise novel therapeutic strategies for the treatment of diseased adult hearts. Here, we provide an overview of the established injury models to study cardiac regeneration. We summarize pioneering studies that demonstrate the potential of using neonatal cardiac injury models to identify factors that may stimulate heart regeneration by inducing endogenous cardiomyocyte proliferation in the adult heart. To conclude, we briefly summarize studies in large animal models and the insights gained in humans, which may pave the way toward the development of novel approaches in regenerative medicine
    corecore